domingo, 27 de mayo de 2012

CONCEPTO DE ENERGIA



Índice

Objetivo

Concepto de energía 

Video            

Corriente eléctrica

Corriente continúa         

Corriente alterna

Suministro eléctrico


LA LEY DE OHM

Circuito en serie y paralelo



Objetivo:

Dar a conocer al lector que es “Potencia Eléctrica” conocer sus características y al mismo tiempo resolver problemas y sus aplicaciones


CONCEPTO DE ENERGÍA




Para entender qué es la potencia eléctrica es necesario conocer primeramente el concepto de “energía”, que no es más que la capacidad que tiene un mecanismo o dispositivo eléctrico cualquiera para realizar un trabajo.

Cuando conectamos un equipo o consumidor eléctrico a un circuito alimentado por una fuente de fuerza electromotriz (F.E.M), como puede ser una batería, la energía eléctrica que suministra fluye por el conductor, permitiendo que, por ejemplo, una bombilla de alumbrado, transforme esa energía en luz y calor, o un motor pueda mover una maquinaria.

De acuerdo con la definición de la física, “la energía ni se crea ni se destruye, se transforma”. En el caso de la energía eléctrica esa transformación se manifiesta en la obtención de luz, calor, frío, movimiento (en un motor), o en otro trabajo útil que realice cualquier dispositivo conectado a un circuito eléctrico cerrado.

La energía utilizada para realizar un trabajo cualquiera, se mide en “joule” y se representa con la letra “J”.


Corriente eléctrica
Se denomina corriente eléctrica al flujo de carga eléctrica a través de un material sometido a una diferencia de potencia

A partir de la corriente eléctrica se definen dos magnitudes: la intensidad y la densidad de corriente. El valor de la intensidad de corriente que atraviesa un circuito es determinante para calcular la sección de los elementos conductores del mismo.

La intensidad de corriente (I) en una sección dada de un conductor (s) se define como la carga eléctrica (Q) que atraviesa la sección en una unidad de tiempo (t):


. Si la intensidad de corriente es constante, entonces

La densidad de corriente (j) es la intensidad de corriente que atraviesa una sección por unidad de superficie de la sección (S).

Corriente continúa

La corriente continua (CC o DC) se genera a partir de un flujo continuo de electrones (cargas negativas) siempre en el mismo sentido, el cual es desde el polo negativo de la fuente al polo positivo. Al desplazarse en este sentido los electrones, los huecos o ausencias de electrones (cargas positivas) lo hacen en sentido contrario, es decir, desde el polo positivo al negativo.

Por convenio, se toma como corriente eléctrica al flujo de cargas positivas, aunque éste es a consecuencia del flujo de electrones, por tanto el sentido de la corriente eléctrica es del polo positivo de la fuente al polo negativo y contrario al flujo de electrones y siempre tiene el mismo signo.

La corriente continua se caracteriza por su tensión, porque, al tener un flujo de electrones prefijado pero continuo en el tiempo, proporciona un valor fijo de ésta (de signo continuo), y en la gráfica V-t (tensión tiempo) se representa como una línea recta de valor V.

Ej: Corriente de +1v












Corriente alterna

En la corriente alterna (CA o AC), los electrones no se desplazan de un polo a otro, sino que a partir de su posición fija en el cable (centro), oscilan de un lado al otro de su centro, dentro de un mismo entorno o amplitud, a una frecuencia determinada (número de oscilaciones por segundo).

Por tanto, la corriente así generada (contraria al flujo de electrones) no es un flujo en un sentido constante, sino que va cambiando de sentido y por tanto de signo continuamente, con tanta rapidez como la frecuencia de oscilación de los electrones.

En la gráfica V-t, la corriente alterna se representa como una curva u onda, que puede ser de diferentes formas (cuadrada, sinusoidal, triangular..) pero siempre caracterizada por su amplitud (tensión de cresta positiva a cresta negativa de onda), frecuencia (número de oscilaciones de la onda en un segundo) y período (tiempo que tarda en dar una oscilación).

Ej: Corriente de 2Vpp (pico a pico) de amplitud, frecuencia 476'2 Hz (oscil/seg)



Suministro eléctrico

Se denomina suministro eléctrico al conjunto de etapas que son necesarias para que la energía eléctrica llegue al consumidor final. Como la energía eléctrica es difícil de almacenar, este sistema tiene la particularidad de generar y distribuir la energía conforme ésta es consumida. Por otra parte, debido a la importancia de la energía eléctrica, el suministro es vital para el desarrollo de los países y de interés para los gobiernos nacionales, por lo que estos cuentan con instituciones especializadas en el seguimiento de las tres etapas fundamentales: generación, transmisión y distribución.

LA LEY DE OHM


La Ley de Ohm, postulada por el físico y matemático alemán
Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:

1.    Tensión o voltaje "E", en volt (V).
2.    Intensidad de la corriente " I ", en ampere (A).
3.    Resistencia "R" en ohm ( ) de la carga o consumidor conectado al circuito.

Circuito eléctrico cerrado compuesto por una pila de 1,5 volt, una resistencia o carga eléctrica "R" y la. Circulación de una intensidad o flujo de corriente eléctrica " I " suministrado por la propia pila.



Debido a la existencia de materiales que dificultan más que otros el paso de la corriente eléctrica a través de los mismos, cuando el valor de su resistencia varía, el valor de la intensidad de corriente en ampere también varía de forma inversamente proporcional. Es decir, a medida que la resistencia aumenta la corriente disminuye y, viceversa, cuando la resistencia al paso de la corriente disminuye la corriente aumenta, siempre que para ambos casos el valor de la tensión o voltaje se mantenga constante.

Por otro lado y de acuerdo con la propia Ley, el valor de la tensión o voltaje es directamente proporcional a la intensidad de la corriente; por tanto, si el voltaje aumenta o disminuye, el amperaje de la corriente que circula por el circuito aumentará o disminuirá en la misma proporción, siempre y cuando el valor de la resistencia conectada al circuito se mantenga constante.



Normalmente se analiza la Ley de Ohm como una relación entre el voltaje, la corriente y el valor de un resistor

Una forma más completa de expresar la Ley de Ohm es incluyendo la fórmula de potencia eléctrica.

Si se utiliza la conocida fórmula de potencia (con unidad de watts o vatios): P = V x I, potencia = voltaje x corriente, y sus variantes: V = P / I e I = P / V, se obtienen ecuaciones adicionales.

Las nuevas ecuaciones permiten obtener los valores de potencia, voltaje, corriente y resistencia, con sólo dos de las cuatro variables.

Despejando para P (potencia en watts o vatios) se obtiene:
P = V2 / R, P = I2 x R, P = V x I

Despejando para I (corriente en amperios) se obtiene:
I = V / R, I = P / V, I = (P / R)1/2

Despejando para R (resistencia en ohmios) se obtiene:
R = V / I, R = V2 / P, R = P / I2

Despejando para V (Voltaje en voltios) se obtiene:
V = (P x R)1/2, V = P / I, V = I x R

En el siguiente diagrama se muestra un resumen completo de las fórmulas, arreglado de manera que sea fácil su memorización.


Circuitos en serie
En un circuito en serie los receptores están instalados uno a continuación de otro en la línea eléctrica, de tal forma que la corriente que atraviesa el primero de ellos será la misma que la que atraviesa el último. Para instalar un nuevo elemento en serie en un circuito tendremos que cortar el cable y cada uno de los terminales generados conectarlos al receptor.
Circuito en paralelo
En un circuito en paralelo cada receptor conectado a la fuente de alimentación lo está de forma independiente al resto; cada uno tiene su propia línea, aunque haya parte de esa línea que sea común a todos. Para conectar un nuevo receptor en paralelo, añadiremos una nueva línea conectada a los terminales de las líneas que ya hay en el circuito.
Caída de tensión en un receptor      
Aparece un concepto nuevo ligado a la tensión. Cuando tenemos más de un receptor conectado en serie en un circuito, si medimos los voltios en los extremos de cada uno de los receptores podemos ver que la medida no es la misma si aquellos tienen resistencias diferentes. La medida de los voltios en los extremos de cada receptor la llamamos caída de tensión.

La corriente en los circuitos serie y paralelo
Una manera muy rápida de distinguir un circuito en seria de otro en paralelo consiste en imaginala circulación de los electrones a través de uno de los receptores: si para regresen a la pila atravesando el receptor, los electrones tienen que atravesar otro receptor, el circuito está en serie; si los electrones llegan atravesando sólo el receptor seleccionado, el circuito está en paralelo.
Pulsa sobre los circuitos de abajo para ver el movimiento de los electrones
Características de los circuitos serie y paralelo
Serie
Paralelo
Resistencia
Aumenta al incorporar receptores
Disminuye al incorporar receptores
Caida de tensión
Cada receptor tiene la suya, que aumenta con su resistencia.
La suma de todas las caídas es igual a la tensión de la pila.
Es la misma para cada uno de los receptores, e igual a la de la fuente.
Intensidad
Es la misma en todos los receptores e igual a la general en el circuito.
Cuantos más receptores, menor será la corriente que circule.
Cada receptor es atravesado por una corriente independiente, menor cuanto mayor resistencia.
La intensidad total es la suma de las intensidades individuales. Será, pues, mayor cuanto más receptores tengamos en el circuito.
Cálculos
 














Índice


Índice

Objetivo

Concepto de energía 

Video            

Corriente eléctrica

Corriente continúa         

Corriente alterna

Suministro eléctrico


La ley de ohm

Circuito en serie y paralelo